A Curiously Rational Result

Matt Alexander*

June 18, 2014

The following is problem 1196 from the Spring 2009 Pi Mu Epsilon Journal [1]: Let $\mathbb{Q}^{*}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, a \neq 0, b>0\right.$, and $\left.\operatorname{GCD}(a, b)=1\right\}$. In other words, \mathbb{Q}^{*} is the set of all nonzero rational numbers written in lowest terms. Find, with proof, the value of

$$
\sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{2}}
$$

Proof. In order to find a general solution to this problem we will define a new function

$$
g(m)=\sum_{\frac{a}{b} \in \mathbb{Q}^{+}} \frac{1}{(a b)^{m}}
$$

where m is an even positive integer, and where \mathbb{Q}^{+}is defined by removing the negative values of a in \mathbb{Q}^{*}. In other words, $\mathbb{Q}^{+}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{N}\right.$ and $\operatorname{GCD}(a, b)=$ $1\}$. Then, replacing the 2 in our original problem with the general m,

$$
\sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{m}}=2 \sum_{\frac{a}{b} \in \mathbb{Q}^{+}} \frac{1}{(a b)^{m}}=2 g(m)
$$

Now, let

$$
a b=n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}},
$$

where $r=\omega(n)$ is equal to the number of distinct primes in the factorization of n. We must find the number of choices of a and b such that $a b=n$ and $\operatorname{GCD}(a, b)=1$. Since $\prod p_{i}^{\alpha_{i}}=n=a b, \quad p_{i}^{\alpha_{i}}$ can be in the factorization of either a or b. So, since there are r primes, the multiplication principle implies that there are $2^{\omega(n)}$ choices for a and b. Using these we conclude that

$$
g(m)=\sum_{\frac{a}{b} \in \mathbb{Q}^{+}} \frac{1}{(a b)^{m}}=\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{m}} .
$$

Now, we will derive an identity of the Riemann zeta function. First, we need few tools to work with. The following are taken from [2].

[^0]Definition 1. The Riemann zeta-function, $\zeta(s)$, is defined as

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} \quad \operatorname{Re}(s)>1
$$

Definition 2. An arithmetic function, $f(n)$, is multiplicative if, given $a, b \in \mathbb{N}$ and $\operatorname{GCD}(a, b)=1, f(a) f(b)=f(a b)$.

Identity 1. It was observed by Euler that

$$
\sum_{n=1}^{\infty} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

when $\operatorname{Re}(s)>1$.
Theorem 1. If $f(n)$ is a real or complex-valued multiplicative function such that $\sum_{n=1}^{\infty}|f(n)|<\infty$, then

$$
\sum_{n=1}^{\infty} f(n)=\prod_{p}\left(1+f(p)+f\left(p^{2}\right)+f\left(p^{3}\right)+\ldots\right)
$$

where \prod_{p} is the product over all of the primes.
Using these, we can begin the derivation of our identity. Let $f(n)=\frac{2^{\omega(n)}}{n^{s}}$ where $\operatorname{Re}(s)>1$. Suppose there exists $k, l \in \mathbb{N}$ such that $\operatorname{GCD}(k, l)=1$. Then since k and l share no primes, $k l$ contains all of the primes from k and l in its factorization. So $\omega(k)+\omega(l)=\omega(k l)$. Then

$$
f(k) f(l)=\frac{2^{\omega(k)}}{k^{s}} \frac{2^{\omega(l)}}{l^{s}}=\frac{2^{\omega(k)+\omega(l)}}{k^{s} l^{s}}=\frac{2^{\omega(k l)}}{(k l)^{s}}=f(k l) .
$$

So, $f(n)$ is a multiplicative function.
Now, we observe that the following inequalities hold for all $p \geq 5$ and all $k \geq 1: 2 \leq 2 \sqrt{2^{k}}, 2 \leq 2 \sqrt{3^{k}}, 2 \leq \sqrt{5^{k}}, 2 \leq \sqrt{7^{k}}, \ldots, 2 \leq \sqrt{p^{k}}$. So, for $n=\prod p_{i}^{\alpha_{i}}$, by multiplying the previous inequalities together for the primes in n, we can see that $2^{\omega(n)} \leq 4 \sqrt{n}$. So

$$
\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}}<\sum_{n=1}^{\infty} \frac{4 \sqrt{n}}{n^{s}}=\sum_{n=1}^{\infty} \frac{4}{n^{s-\frac{1}{2}}}
$$

Thus, since $\sum_{n=1}^{\infty} \frac{4}{n^{s-\frac{1}{2}}}$ converges for $\operatorname{Re}(s)>\frac{3}{2}, \sum_{n=1}^{\infty}|f(n)|<\infty$. It can be shown that $\sum f(n)$ converges for $\operatorname{Re}(s)>1$. However, this is unnecessary for our proof. Now we can use Theorem 1.

This leads us to the following algebraic manipulations and substitutions:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}} & =\prod_{p}\left(1+\frac{2^{\omega(p)}}{p^{s}}+\frac{2^{\omega\left(p^{2}\right)}}{p^{2 s}}+\frac{2^{\omega\left(p^{3}\right)}}{p^{3 s}}+\ldots\right) \\
& =\prod_{p}\left(1+\frac{2}{p^{s}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\frac{1}{p^{3 s}}+\ldots\right)\right) \\
& =\prod_{p}\left(1+\frac{2}{p^{s}}\left(\frac{1}{1-p^{-s}}\right)\right) \\
& =\prod_{p}\left(1-p^{-s}\right)^{-1}\left(1+p^{-s}\right) \\
& =\zeta(s) \prod_{p} \frac{1-p^{-2 s}}{1-p^{-s}} \\
& =\frac{\zeta^{2}(s)}{\zeta(2 s)}
\end{aligned}
$$

So

$$
\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}}=\frac{\zeta^{2}(s)}{\zeta(2 s)}
$$

Now returning to our original problem, recall that the summation can be expressed in general as $2 g(m)$. So

$$
2 g(m)=2 \sum_{\frac{a}{b} \in \mathbb{Q}^{+}} \frac{1}{(a b)^{m}}=2 \sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{m}}=2 \frac{\zeta^{2}(m)}{\zeta(2 m)}
$$

The formula for calculating the Riemann zeta-function for even, positive integers can be found in [2].

Definition 3. The Bernoulli numbers, B_{j}, are defined by

$$
\frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{z^{j}}{j!} \quad(|z|<2 \pi)
$$

Theorem 2. If $k \in \mathbb{N}$, and B_{j} denotes the jth Bernoulli number then,

$$
\zeta(2 k)=\frac{(-1)^{k+1}(2 \pi)^{2 k} B_{2 k}}{2(2 k)!}
$$

Given these, we can calculate the solutions for positive even values. Let $m=2 k$, then

$$
2 \frac{\zeta^{2}(2 k)}{\zeta(4 k)}=-\left(\frac{(4 k)!}{(2 k)!^{2}}\right)\left(\frac{\left(B_{2 k}\right)^{2}}{B_{4 k}}\right)
$$

At first glance it may seem like this should always result in a negative value. However, after consideration, it can be seen that every Bernoulli number of the form $B_{4 k}$ is negative, so the above expression has a positive value. Taking $k=1$ we obtain a solution to our original problem:

$$
2 g(2)=\sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{2}}=2 \frac{\zeta^{2}(2)}{\zeta(4)}=-\left(\frac{(4)!}{(2)!^{2}}\right)\left(\frac{\left(B_{2}\right)^{2}}{B_{4}}\right)=-\left(\frac{24}{4}\right)\left(-\frac{30}{36}\right)=5
$$

For $k=2, k=3$, and $k=4$ respectively,

$$
\sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{4}}=\frac{7}{3} \quad \sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{6}}=\frac{1430}{691} \quad \sum_{\frac{a}{b} \in \mathbb{Q}^{*}} \frac{1}{(a b)^{8}}=\frac{7293}{3617}
$$

Acknowledgement: The author would like to thank the referee for the valuable comments and suggestions.

References

[1] "Problem 1196." Pi Mu Epsilon Journal, (559). Spring 2009. <http://www. pme-math.org/journal/ProblemsS2009.pdf>. 7 July 2009.
[2] Ivić, Aleksandar, The Riemann Zeta-Function, John Wiley \& Sons, Inc., 1985.

[^0]: * Junior Undergraduate, Youngstown State University

